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LONG TERM GOALS 
 
The long term goals of this research are to develop practical and efficient algorithms for application to 
the nonlinear inversion problems encountered in ocean acoustics. Such algorithms would be used for 
estimating or accounting for the effects of the environment on acoustic propagation, detection and 
tracking in shallow water. 
  
OBJECTIVES 
 
The specific objectives of this research are to adapt a specific nonlinear filter, known as a Daum filter, 
for acoustic inversion of shallow water environmental properties, and to assess the performance of this 
nonlinear filter relative to local linear inversion on the one hand and global methods, e.g. Monte Carl 
methods on the other hand. 
  
APPROACH 
 
Many inverse problems of interest in ocean acoustics are intrinsically nonlinear, e.g. inverting 
measured pressure data for bottom and scattering properties. The solution to the nonlinear inversion 
problem is usually approached in one of two ways. The first way is to assume a starting model, which 
one hopes is near to the true model, then recursively solve a linearized version of the inverse problem 
for corrections to the starting model and model covariance. The advantage of this approach is that the 
numerical implementation of the solution algorithm is relatively straightforward and in a linear 
problem the statistical properties are well defined and will remain gaussian if they start out gaussian. 
However linearization of a nonlinear system can produce biased estimates for two reasons: 1. 
Linearization of the system and/or measurement equations may not be a good approximation, and 2. 
Nonlinear systems do not maintain gaussian statistics as they evolve even if they are initially gaussian. 
Another problem with linearizing a nonlinear system is that with a poor starting guess the solution 
algorithm may never converge to the true answer. If the starting model represents a point near a local 
minimum of the solution space, the final solution will be trapped in that local minimum, and never 
converge to the true answer. This can be circumvented by using Monte Carlo techniques to randomly 
sample the solution space for starting models. 
 
The other class of solution methods attack the nonlinear problem directly by using simulated annealing 
or genetic algorithms. The disadvantage of these directly nonlinear methods, is that there is no way to 
conveniently propagate the statistical properties of the solution through to the final result. One solution 
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to this problem is to find the global minimum in the solution space, if one exists, then linearize about 
the solution representing the global minimum and do a statistical analysis about that solution. This was 
done by Potty et al.(2000), who employed a genetic algorithm followed by linear analysis about the 
solution determined by the genetic algorithm. 
 
The recursive algorithms commonly employed for the estimation of the model and covariance relative 
to some initial starting values bear a strong resemblance to Kalman filters, which are commonly 
employed in target tracking algorithms. The original Kalman filter was derived for strictly linear 
systems. However, the Extended Kalman Filter can be applied to systems which are weakly nonlinear. 
In the late 1980s Frederick Daum, a mathematician working at Raytheon Corporation, developed a 
fully nonlinear formulation to the filtering problem for target tracking (Daum, 1985, 1986, 1987). His 
theory is elegant, but impractical from an implementation point of view. Sometime later Schmidt 
(Schmidt, 1993) succeeded in deriving an approximate algorithm based on Daum's original theory, and 
developed a successful numerical implementation of a nonlinear filter that was a significant 
improvement to the Kalman and Extended Kalman filters for the type of tracking problem Schmidt 
was interested in. 
 
Filter type algorithms are ideally suited to inverse problems with time dependent oceanography or 
range dependence. We do not anticipate attempting to include time dependent oceanography at this 
time, but we would like to look at the issue of range dependent inversion. The idea would be to 
sequentially update parameter estimates as a function of range. Also note that any inversion algorithm 
can be cast into a filter like algorithm by supplying the data sequentially and updating the model 
parameter estimates sequentially as data is added to the problem, or a smoother by considering the 
complete data set, and working both forwards and backwards through the data set. In the end, probably 
the best formulation to use for a given inverse problem depends on the noise statistics. This is also 
something we propose to investigate. 
 
Linear inverse problems admit the construction of both data and model resolution matrices. These 
resolution matrices can be used as metrics with which to estimate model uniqueness and data 
predictability. We will be able to construct resolution matrices for the nonlinear problem and compare 
them with their fully linear equivalents. 
 
Quantification of the resolution of an inversion can be used for experimental design. While the 
resolution of a linear problem is well defined, and described in basic texts such as Menke (1983),  it is 
less so for a nonlinear problem. One of the objectives of this research is the quantification of the 
resolution for nonlinear problems. The resolution for the nonlinear problem can be defined formally: 
Given a true but unknown model mtrue such that  
 

d = g(mtrue)  mtrue =  g-1(d) 
 
where d is the data vector, and g is the operator connecting the data to the model, e.g. the wave 
equation, how close is a particular estimate mest to mtrue ? 
 

mtrue =  gest-1(d) = gest-1[g(mtrue)] 
 

mest =  r(mtrue) 
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where r(.) =  gest-1[g(.)] is the model resolution operator. The nonlinear model resolution r(.) 
operator can be computed iteratively from the Neumann series representation for gest with assumption 
that both the data functional and the model perturbation functional possess regular perturbation 
expansions. (An example of a problem which possesses a model perturbation functional with a regular 
perturbation series is normal mode acoustic propagation with “slow enough” perturbations such that 
the modes adjust adiabatically to the perturbations, and the mode eigenvalues are “far” from cut-off.) 

 
d = g(εm) = εG(1)m + ε2G(2)mm + ε3G(3)mmm + … 

 
εm = εI(1)d + ε2I(2)dd + ε3I(3)ddd + … 

 
where the  I(i)  are the expansion operators of the  g-1 Substitute data into the  model expansion and 
order by ε: 
 
ε1:   m = I(1)G(1)m 
 
ε2:  0 = (I(1)G(2) + I(2)G(1)G(1))mm  
 
ε3:   0 = … 
 
The remarkable thing to note about these expansions is that the nonlinear components of the model in 
the data do not contribute to the reconstruction. (Snieder, 1990). The term I(1)G(2) is a linear 
inversion of the component of the data, that has a quadratic dependence on the data.  If the nonlinear 
inversion is to reproduce the model m exactly, the I(1)G(2) term must be canceled by the 
I(2)G(1)G(1) term. We can now define the nonlinear resolution. For the estimated model  mest we 
have 
 
mest = I(1)G(1)m + (I(1)G(2) + I(2)F(1)F(1))mm + … 
 
mest = R(1)mtrue + R(2)mtruemtrue + … 
 
where R(1) tells us how much smearing there is in the map between  m and mest, and R(2) tells us 
how much spurious nonlinear mapping from the true model there is to the model functional (Snieder, 
1991). 
 
WORK COMPLETED 
 
This past summer Ganse explored the inversion of ocean acoustic reverberation for bottom loss and 
bottom scattering strength via the NATO Deployable Multistatic Sonar (DEMUS) experiment, 
supported under the [ARL project / John Tague].  This experiment was not optimized for the inversion 
of ocean bottom information since tracking was the focus of the experiment, but the resolution 
calculation helps one to quantify the limits of information gained about the ocean bottom in the 
problem, which is of interest in ultimately passing estimated environmental information on to other 
researchers’ sonar tracking performance calculations.  A particularly interesting development in this 
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more applied work was the discovery of another basic research issue – the need for a tradeoff between 
the stability of the inverse problem and the boundary conditions imposed on the regularization 
operator. The inverse problem without regularization cannot be solved due to its instability via the null 
space in the propagation model.  But one’s choice of regularization (e.g. to choose the smoothest 
among an infinite list of bottom profiles which all fit the data to within the noise equally well) may 
include a set of boundary conditions on the regularization. The choice of boundary conditions can 
affect whether the null space of the regularization overlaps with the null space of the propagation 
model.  If it does overlap, the problem is still unstable and can require a different set of boundary 
conditions than initially specified, as was discovered in this work.  The quantification of information 
content in inversion results has much to do with the choice of tradeoff points, whether between 
variance and resolution, data misfit and regularization, or stability and boundary conditions. 
 
RESULTS 
 
The quantification of inverse problem resolution allows for the possibility of new tools in the planning 
of ocean geoacoustic experiments.  A pre-measurement inverse theory resolution analysis can be used 
as part of experiment planning regarding sensor placement and ship tracks, such that a desire for an 
experimental configuration giving the most information in bottom inversion can be quantitatively 
balanced with that for other needs like tracking and communication.  This subject is one of the 
segments of Ganse’s PhD work this year.  The nonlinear geoacoustic inverse problem is ill-posed, so 
that one can only estimate the continuous function of seafloor properties to a limited resolution.  This 
limited resolution varies with experiment geometry, frequency, and other such factors, and can be 
quantified in either a frequentist or Bayesian framework.  Given statistics of the measurement noise 
(but without any new measurements themselves), the resolution can be quantified exactly for a linear 
inverse problem, and compared between different experiment geometries. Nonlinear problems 
complicate this picture, but if the problem can be transformed into a weakly nonlinear form then the 
resolution can still be explored in an approximate sense and used as a tool in the planning phase.  The 
ideal situation is when previous seafloor estimates exist for the same region in which a new experiment 
with new geometry and configuration is being planned.  For the scenario without previous results, a 
somewhat more ad-hoc approach can still compare changes in resolution across different seafloor 
models.  An example resolution result is shown in Fig. 1.  
 
With the aim of validating the use of standard linear tools for quantifying uncertainty and resolution on 
ocean geoacoustic nonlinear inverse problems, we continued development of Monte Carlo and 
nonlinear filter-based inversion techniques whose results will be compared against the linearized ones.  
This comparison is the ultimate goal of Ganse’s PhD work, per his general exam which was passed in 
May, and during this year the Monte Carlo and filter-based tools were completed and tested.  For 
example, in Fig. 2 a test problem result shows the difference between the form of estimation 
uncertainties calculated with a traditional linearized method and with a numerical Monte Carlo 
method.  The numerical, Monte Carlo method is comprehensive in its treatment of uncertainty in 
nonlinear problems but can be extremely slow to compute.  The idea behind the nonlinear filter-based 
work is to provide a much faster, if less comprehensive, way to address the non-Gaussian uncertainty 
of nonlinear problems and thus validate how accurate an approximation it is to use the very fast, 
traditional linear tools on a given inverse problem.  This subject was presented in two fall 2006 AGU 
talks (Ganse and Odom, 2006a and Odom and Ganse, 2006a) and our fall 2006 ASA talk (Ganse and 
Odom, 2006a); the ASA talk received the 2nd place best student paper award. Odom and Ganse 
(2006b) was an invited talk at the Fall AGU Meeting. 
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IMPACT/APPLICATIONS 
 
A nonlinear, well characterized filter-based inversion method and algorithm will have application to 
environmental estimation and target tracking. A practical method way to compute the resolution for a 
nonlinear inversion will have an impact on the characterization of uncertainty and uniqueness of 
environmental estimates required for acoustic propagation. 
 
 

 
Figure 1:  Resolution matrix quantifying the limited resolving power of the inverse problem in 

estimating the Pwave velocity profile shown in the margin plots (same profile on each axis).  In the 
ideal, perfectly resolved problem – 100% information recovered about the ocean bottom –  this 

matrix would show a red strip down the diagonal, and by optimizing experiment geometry one can 
attempt to move the problem toward that ideal.  Frequentist inversion can only solve for weighted 

averages of the bottom profiles, and the weightings (the information this matrix contains) are 
generally clustered in neighboring parameters in the profile and thus represent resolving power as a 
function of depth.  In this hypothetical experiment, in the top 30m of this profile this matrix shows 
that the inverse problem can only resolve Pwave information to within about 20m (10 parameters) 

depth resolution, and can resolve virtually nothing at all in the shadow zone around 70-80m 
(roughly 35th-40th parameter).  Frequency was 50Hz, receiver VLA was 8 hydrophones from 10-

150m deep at 1km range, SSP had minimum at ~40m and postive depth gradient (increasing 
soundspeeds) below, propagation code was OASES oasp. 
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Figure 2.  Solution statistics and probabilities for a simple, nonlinear, 2D source location estimation 
test problem to demonstrate the difference between linearized estimation results and fully nonlinear 

results.  The blue triangles are the acoustic receiver array, and the black and white circle is the 
source location estimated by both a linearized estimator (Gauss-Newton) and a fully nonlinear, 
numerical Bayesian Markov-Chain Monte Carlo (MCMC) estimator.  Noise on the receptions 

means the estimations have uncertainty on their solutions, but the linearized uncertainty can only be 
specified in terms of a multi-variate Gaussian, hence the ellipse, whereas the numerical MCMC 

result in color can show the full non-Gaussian shape of the uncertainty.  In this simple test problem, 
the numerical MCMC result computes quickly, but in more complicated ocean geoacoustic 

estimations the result computes far more slowly, so our filter-based work aims to give some of the 
non-Gaussian information about the uncertainty in a much faster way.  Part of researching the 

filter-based work will be comparing its results to MCMC results. 
 
 
RELATED PROJECTS 
 
Our research is directly related to other programs studying effects of uncertainty in the environment, 
measurements, and models on acoustic propagation, and target detection and characterization.  
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